Exam I, MTH 320, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let D be a subgroup of $\left(Z_{6},+\right)$ with 2 elements. Find all left cosets of D.
Trivial calculations, all of you got it right
(ii) Let $(A, *)$ be an abelian group with 30 elements. Suppose that A has a subgroup of order 3 and it has a cyclic subgroup of order 10. Prove that A has a unique subgroup of order 15.
Sketch: Let G be a subgroup of order 3. Since 3 is prime, G is cyclic. Hence $G=<a>$ for some $a \in A$ and thus $|a|=3$. Let $F=<c>$ be a cyclic group of order 10. Hence $|c|=10$. Since $\operatorname{gcd}(3,10)=1$ and $a * c=c * a$, we know (Class NOTES), $|a * c|=30$. Let $d=a * c$. Hence $A=<c>$. Since $15 \mid 30$ and A is cyclic, we know that A has a unique subgroup of order 15.
(iii) Given A is a cyclic group with 24 elements. Let $D=\{b \in A \mid A=\}$. Find $|D|$. Assume that $A=<a>$ for some $a \in A$. Find all positive integers k such that $\left|a^{k}\right|=8$.
Sketch: We know $|D|=\phi(24)=12$. We know $\operatorname{gcd}(24, k)$ must be 3. Hence, $k=3,9,15,21$ (exactly $\phi(8)=4$ different elements)
(iv) Let $(A, *)$ be a group and $F=\{b \in A \mid b * a=a * b$ for every $a \in A\}$. Prove that F is a nonempty set, then prove that F is a subgroup of A .
Sketch: Since $e * w=w * e=w$ for every $w \in A$, $e \in F$ and thus F nonempty. Let $x, y \in F$. We show $x^{-1} * y \in F$ (i.e., we show that $x^{-1} * y$ commute with every element in A). Let $s \in A$. We show $x^{-1} * y * s=s * x^{-1} * y$. Since $x \in F\left(\right.$ i.e., $x * g=g * x$ for every $g \in A$). we know that $x^{-1} * s=s * x^{-1}$ (by HW). Hence $x^{-1} * y * s=x^{-1} * s * y=s * x^{-1} * y$. Thus $x^{-1} * y \in F$
(v) Let $(A, *)$ be a cyclic group with $n<\infty$ elements. Choose two positive integers say m, k such that $m \mid n$ and $k \mid m$ (hence $k \mid n$). Let F be a subgroup of A with m elements and let L be a subgroup of A with k elements.
a. Prove that $L \subset F$.

Sketch: Since A is cyclic and $k \mid n$, A has UNIQUE (stare at UNIQUE) subgroup with k elements, say W. Hence $L=W$. Since A is cyclic, F is the unique cyclic subgroup of A with m elements. Since F is cyclic and $k \mid m$, \mathbf{F} has unique cyclic subgroup with \mathbf{k} elements, say H, Hence H is also a subgroup of A with k elements (note $H<F<A$). Hence $K=W=L$. Thus $L \subset F$.
b. Assume $n=12, m=6$. Choose $d \in A$ such that $d \notin F$. Prove that $|d|=4$ or 12 .

Sketch: Let $h=|d|$. Then $h \mid 12$. Since A is cyclic, $G=\left\{e, d, \ldots, d^{h-1}\right\}$ is the unique subgroup of A with h elements. If $h=1,2,3,6$, then $h \mid m$ and $G \subset F$ by (a). Since $d \notin F, G \nsubseteq F$. Thus $h=4 o r 12$.
(vi) Let $(A, *)$ be a finite abelian group with 36 elements and let W be a subgroup of A with 9 elements. Suppose $a \in A$ such that $|a|=2$. Let $M=a * W$ (so M is a left coset of W). Prove that $W \cup M$ is a subgroup of A with exactly 18 elements.
Sketch: Let $H=W \cup M$. We know that $W \cap M=\{ \}$ and we Know $|W|=|M|=9$. Hence $|H|=18$. Since H is finite set, we only need to show that H is closed. Let $x, y \in H$. We consider three cases:
case 1: $x, y \in W$. Then clearly $x * y \in W$ (Since \mathbf{W} is a group). Case two: $x, y \in M$. Then $x=a * w_{1}, y=a * w_{2}$ for some $w_{1}, w_{2} \in W$. Thus $x * y=a * w_{1} * a * w_{2}=a^{2} * w_{1} * w_{2}$ (since A is abelian) $=e * w_{1} * w_{2}=w_{1} * w_{2} \in W \subset H$. Case three $x \in W, y \in M$. Hence, again, $y=a * w$ for some $w \in W$. Thus $x * y=x * a * w=a * x * w \in M$ (since $x * w \in W$). We are done

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam II, MTH 320, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let H be a subgroup of A such that H has exactly two left cosets. Prove that H is normal in A.
Sketch: Let $a \in A$. If $\mathbf{a} \in H$, then $a * H=H * a$. If $a \notin H$, then we know that $A=H \cup(a * H)=H \cup(H * a)$ and $H \cap(a * H)=H \cap(H * a)=\emptyset$, and thus $a * H=H * a$
(ii) Prove that S_{3} has a normal subgroup of order 3 .

Sketch: Since $\left|A_{3}\right|=3$ and $\frac{\left|S_{3}\right|}{\left|A_{3}\right|}=2$, we conclude that A_{3} has exactly 2 distinct left cosets, and thus A_{3} is normal in S_{3} by (i) (or just by class note).
(iii) Given $F:\left(Z_{8},+\right) \rightarrow\left(Z_{6},+\right)$ is a non-trivial group homomorphism. Find $\operatorname{Ker}(F)$ and Range (F).

Sketch: All of you got it right!!!
(iv) We know that if H is a normal subgroup of a group A such that $|A / H|$ is finite, then A need not be finite. Let H be a finite normal subgroup of A such that $|A / H|$ is finite, prove that A is finite.
sketch Let $n=|A / H|=|A| /|H|$. Let $m=|H|$. Hence $|A|=m n$
(v) Given $F:(A, *) \rightarrow(B, \square)$ is a group homomorphism such that $F(v)=u$ for some $v \in A$. Prove that $F^{-1}(u)=$ $v * \operatorname{Ker}(F)$ (Note that $F^{-1}(u)$ is the set $\{a \in A \mid F(a)=u\}$.
Sketch: Let $K: A / \operatorname{Ker}(F) \rightarrow \operatorname{Image}(F)$, given by $K(a * \operatorname{Ker}(F))=F(a)$. We know that K is a group isomorphism. Thus $F^{-1}(u)=v * \operatorname{Ker}(F)$.
(vi) Find the order of the element $(145) O(2561) \in S_{6}$.

Sketch : Trivial
(vii) Is (145) o (4731) Even or Odd?

Sketch Trivial

(viii) Is the group $U(24)$ isomorphic to $\left(Z_{8},+\right)$? explain.
sketch: (Note that each group is with 8 elements). Since $\mathbf{2 4}$ is not of the form $2 p^{m}$ for some odd prime p, $\mathbf{U}(24)$ is not cyclic but Z_{8} is cyclic. Hence they are not isomorphic
(ix) Let $H=Z_{4} \times Z_{4}, K=Z_{2} \times Z_{8}$. Then H and K are both abelian groups with 16 elements. However, show that H is not isomorphic to K.
sketch: K has an element of order 8 (for example (0,1)) but each element in \mathbf{H} is of order ≤ 4. So they cannot be isomorphic
(x) Let $F: A \rightarrow A$ be a group homomorphism such that $F(a)=a^{-1}$ for every $a \in A$. Prove that A is an abelian group Sketch: Let $a, b \in A$. Then $F\left(a^{-1} * b^{-1}\right)=\left(a^{-1} * b^{-1}\right)^{-1}=b * a$. Since F is a group homomorphism, $F\left(a^{-1} * b^{-1}\right)=F\left(a^{-1}\right) * F\left(b^{-1}\right)=a * b$. Thus $a * b=b * a$ (if you show $a^{-1} * b^{-1}=b^{-1} * a^{-1}$ is OK too by HW problem)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam , MTH 320, Fall 2015

Ayman Badawi

QUESTION 1. 1) Prove that A_{5} has a cyclic subgroups of order 6 and a cyclic subgroup of order 5 but it has no subgroups of order 30 .
2) Let A be an abelian group of order 27 such that each element of A different from e has order 3 . Up to isomorphism classify all such groups (i.e., up to isomorphism, find all possibilities of such A)
3) Let A be an abelian group with 75 element. If A has a cyclic subgroup of order 25 , then prove that A is cyclic.
4) Let A be an abelian group with 100 elements such that A has no cyclic subgroups of order 25 and it has no cyclic subgroups of order 4 . Prove that A has exactly 24 elements each is of order 5. How many elements of order 10 does A have?
5) Let A be a group with 60 elements. Assume that A has a normal subgroup B with 5 elements. Prove that B is the only subgroup of A with 5 elements.
6) It is clear that $(Z,+)$ is a normal subgroup of $(Q,+)$. Let $H=Q / Z$. Then we know that H is a group. Let $a=\frac{5}{7}+Z, b=\frac{1}{6}+Z \in H$. Find $|a|$ and $|b|$. Show that H has a cyclic subgroup with 21 elements.
7) Let $F: Z_{28} \rightarrow Z_{7}$ be a nontrivial group homomorphism. Find Range(F) and $\operatorname{Ker}(\mathrm{T})$.
8) Let A be a group with 77 elements. Prove that A is not simple.
9) Show that $U(45)$ is not group-isomorphic to $Z_{2} \times Z_{2} \times Z_{6}$.
10) Let $F:\left(P_{2},+\right) \rightarrow(R,+)$ such that $F(f(x))=\int_{0}^{1} f(x) d x$. Then it is easy to see that F is a group homomorphism (do not show that). Note that P_{2} is the set of all polynomials of degree strictly less than 2 , i.e., P_{2} consists of all constants and all polynomials of degree 1. Then
a) Find $\operatorname{Ker}(\mathrm{F})$
b) Let $D=\left\{f(x) \in P_{2} \mid F(f(x))=\sqrt{3}\right\}$. Find the set D.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

