Name-

MTH 320 Abstract Algebra Fall 2015, 1–1

Exam I, MTH 320, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let D be a subgroup of $(Z_6, +)$ with 2 elements. Find all left cosets of D.

-, ID —

Trivial calculations, all of you got it right

(ii) Let (A, *) be an abelian group with 30 elements. Suppose that A has a subgroup of order 3 and it has a cyclic subgroup of order 10. Prove that A has a unique subgroup of order 15.

Sketch: Let G be a subgroup of order 3. Since 3 is prime, G is cyclic. Hence $G = \langle a \rangle$ for some $a \in A$ and thus |a| = 3. Let $F = \langle c \rangle$ be a cyclic group of order 10. Hence |c| = 10. Since gcd(3, 10) = 1 and a * c = c * a, we know (Class NOTES), |a * c| = 30. Let d = a * c. Hence $A = \langle c \rangle$. Since 15 | 30 and A is cyclic, we know that A has a unique subgroup of order 15.

(iii) Given A is a cyclic group with 24 elements. Let $D = \{b \in A \mid A = \langle b \rangle\}$. Find |D|. Assume that $A = \langle a \rangle$ for some $a \in A$. Find all positive integers k such that $|a^k| = 8$.

Sketch: We know $|D| = \phi(24) = 12$. We know gcd(24, k) must be 3. Hence, k = 3, 9, 15, 21 (exactly $\phi(8) = 4$ different elements)

(iv) Let (A, *) be a group and $F = \{b \in A \mid b * a = a * b \text{ for every } a \in A\}$. Prove that F is a nonempty set, then prove that F is a subgroup of A.

Sketch: Since e * w = w * e = w for every $w \in A$, $e \in F$ and thus F nonempty. Let $x, y \in F$. We show $x^{-1} * y \in F$ (i.e., we show that $x^{-1} * y$ commute with every element in A). Let $s \in A$. We show $x^{-1} * y * s = s * x^{-1} * y$. Since $x \in F$ (i.e., x * g = g * x for every $g \in A$). we know that $x^{-1} * s = s * x^{-1}$ (by HW). Hence $x^{-1} * y * s = x^{-1} * s * y = s * x^{-1} * y$. Thus $x^{-1} * y \in F$

- (v) Let (A, *) be a cyclic group with $n < \infty$ elements. Choose two positive integers say m, k such that $m \mid n$ and $k \mid m$ (hence $k \mid n$). Let F be a subgroup of A with m elements and let L be a subgroup of A with k elements.
 - a. Prove that $L \subset F$.

Sketch: Since A is cyclic and $k \mid n$, A has UNIQUE (stare at UNIQUE) subgroup with k elements, say W. Hence L = W. Since A is cyclic, F is the unique cyclic subgroup of A with m elements. Since F is cyclic and $k \mid m$, F has unique cyclic subgroup with k elements, say H, Hence H is also a subgroup of A with k elements (note H < F < A). Hence K = W = L. Thus $L \subset F$.

b. Assume n = 12, m = 6. Choose $d \in A$ such that $d \notin F$. Prove that |d| = 4 or 12.

Sketch: Let h = |d|. Then h | 12. Since A is cyclic, $G = \{e, d, ..., d^{h-1}\}$ is the unique subgroup of A with h elements. If h = 1, 2, 3, 6, then h | m and $G \subset F$ by (a). Since $d \notin F$, $G \not\subseteq F$. Thus h = 4or12.

(vi) Let (A, *) be a finite abelian group with 36 elements and let W be a subgroup of A with 9 elements. Suppose $a \in A$ such that |a| = 2. Let M = a * W (so M is a left coset of W). Prove that $W \cup M$ is a subgroup of A with exactly 18 elements.

Sketch: Let $H = W \cup M$. We know that $W \cap M = \{\}$ and we Know |W| = |M| = 9. Hence |H| = 18. Since H is finite set, we only need to show that H is closed. Let $x, y \in H$. We consider three cases:

case 1: $x, y \in W$. Then clearly $x * y \in W$ (Since W is a group). Case two: $x, y \in M$. Then $x = a * w_1, y = a * w_2$ for some $w_1, w_2 \in W$. Thus $x*y = a*w_1*a*w_2 = a^2*w_1*w_2$ (since A is abelian) $= e*w_1*w_2 = w_1*w_2 \in W \subset H$. Case three $x \in W, y \in M$. Hence, again, y = a * w for some $w \in W$. Thus $x * y = x * a * w = a * x * w \in M$ (since $x * w \in W$). We are done

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com Name-

MTH 320 Abstract Algebra Fall 2015, 1-1

Exam II, MTH 320, Fall 2015

Ayman Badawi

- **QUESTION 1.** (i) Let *H* be a subgroup of *A* such that *H* has exactly two left cosets. Prove that *H* is normal in A.
 - Sketch: Let $a \in A$. If $a \in H$, then a * H = H * a. If $a \notin H$, then we know that $A = H \cup (a * H) = H \cup (H * a)$ and $H \cap (a * H) = H \cap (H * a) = \emptyset$, and thus a * H = H * a
- (ii) Prove that S_3 has a normal subgroup of order 3.

Sketch: Since $|A_3| = 3$ and $\frac{|S_3|}{|A_3|} = 2$, we conclude that A_3 has exactly 2 distinct left cosets, and thus A_3 is normal in S_3 by (i) (or just by class note).

- (iii) Given $F : (Z_8, +) \to (Z_6, +)$ is a non-trivial group homomorphism. Find Ker(F) and Range(F). Sketch: All of you got it right!!!
- (iv) We know that if H is a normal subgroup of a group A such that |A/H| is finite, then A need not be finite. Let H be a finite normal subgroup of A such that |A/H| is finite, prove that A is finite.

sketch Let n = |A/H| = |A|/|H|. Let m = |H|. Hence |A| = mn

-, ID –

(v) Given $F : (A, *) \to (B, \Box)$ is a group homomorphism such that F(v) = u for some $v \in A$. Prove that $F^{-1}(u) = v * Ker(F)$ (Note that $F^{-1}(u)$ is the set $\{a \in A | F(a) = u\}$.

Sketch: Let $K : A/Ker(F) \to Image(F)$, given by K(a * Ker(F)) = F(a). We know that K is a group isomorphism. Thus $F^{-1}(u) = v * Ker(F)$.

(vi) Find the order of the element $(1 \ 4 \ 5) \ O \ (2 \ 5 \ 6 \ 1) \in S_6$.

Sketch : Trivial

(vii) Is (1 4 5) o (4 7 3 1) Even or Odd?

Sketch Trivial

(viii) Is the group U(24) isomorphic to $(Z_8, +)$? explain.

sketch: (Note that each group is with 8 elements). Since 24 is not of the form $2p^m$ for some odd prime p, U(24) is not cyclic but Z_8 is cyclic. Hence they are not isomorphic

(ix) Let $H = Z_4 \times Z_4$, $K = Z_2 \times Z_8$. Then H and K are both abelian groups with 16 elements. However, show that H is not isomorphic to K.

sketch: K has an element of order 8 (for example (0, 1)) but each element in H is of order ≤ 4 . So they cannot be isomorphic

(x) Let $F : A \to A$ be a group homomorphism such that $F(a) = a^{-1}$ for every $a \in A$. Prove that A is an abelian group Sketch: Let $a, b \in A$. Then $F(a^{-1} * b^{-1}) = (a^{-1} * b^{-1})^{-1} = b * a$. Since F is a group homomorphism, $F(a^{-1} * b^{-1}) = F(a^{-1}) * F(b^{-1}) = a * b$. Thus a * b = b * a (if you show $a^{-1} * b^{-1} = b^{-1} * a^{-1}$ is OK too by HW problem)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com MTH 320 Abstract Algebra Fall 2015, 1-1

Final Exam, MTH 320, Fall 2015

Ayman Badawi

QUESTION 1. 1) Prove that A_5 has a cyclic subgroups of order 6 and a cyclic subgroup of order 5 but it has no subgroups of order 30.

2) Let A be an abelian group of order 27 such that each element of A different from e has order 3. Up to isomorphism classify all such groups (i.e., up to isomorphism, find all possibilities of such A)

3) Let A be an abelian group with 75 element. If A has a cyclic subgroup of order 25, then prove that A is cyclic.

4) Let A be an abelian group with 100 elements such that A has no cyclic subgroups of order 25 and it has no cyclic subgroups of order 4. Prove that A has exactly 24 elements each is of order 5. How many elements of order 10 does A have?

5) Let A be a group with 60 elements. Assume that A has a normal subgroup B with 5 elements. Prove that B is the only subgroup of A with 5 elements.

6) It is clear that (Z, +) is a normal subgroup of (Q, +). Let H = Q/Z. Then we know that H is a group. Let $a = \frac{5}{7} + Z, b = \frac{1}{6} + Z \in H$. Find |a| and |b|. Show that H has a cyclic subgroup with 21 elements.

7) Let $F : Z_{28} \to Z_7$ be a nontrivial group homomorphism. Find Range(F) and Ker(T).

8) Let A be a group with 77 elements. Prove that A is not simple.

9) Show that U(45) is not group-isomorphic to $Z_2 \times Z_2 \times Z_6$.

10) Let $F: (P_2, +) \to (R, +)$ such that $F(f(x)) = \int_0^1 f(x) dx$. Then it is easy to see that F is a group homomorphism (do not show that). Note that P_2 is the set of all polynomials of degree strictly less than 2, i.e., P_2 consists of all constants and all polynomials of degree 1. Then

a) Find Ker(F)

b) Let $D = \{f(x) \in P_2 | F(f(x)) = \sqrt{3}\}$. Find the set D.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com